Certifying the Optimality of a Distributed State Estimation System via Majorization Theory
نویسندگان
چکیده
Consider a first order linear time-invariant discrete time system driven by process noise, a preprocessor that accepts causal measurements of the state of the system, and a state estimator. The preprocessor and the state estimator are not co-located, and, at every time-step, the pre-processor transmits either a real number or an erasure symbol to the estimator. We seek the pre-processor and the estimator that jointly minimize a cost that combines two terms; the expected squared state estimation error and a communication cost. In our formulation, the transmission of a real number from the pre-processor to the estimator incurs a positive cost while erasures induce zero cost. This paper is the first to prove analytically that a symmetric threshold policy at the pre-processor and a Kalman-like filter at the estimator, which updates its estimate linearly in the presence of erasures, are jointly optimal for our problem.
منابع مشابه
Certifying Optimality of State Estimation Programs
The theme of this paper is certifying software for state estimation of dynamic systems, which is an important problem found in spacecraft, aircraft, geophysical, and in many other applications. The common way to solve state estimation problems is to use Kalman filters, i.e., stochastic, recursive algorithms providing statistically optimal state estimates based on noisy sensor measurements. We p...
متن کاملDevelopment of a Robust Observer for General Form Nonlinear System: Theory, Design and Implementation
The problem of observer design for nonlinear systems has got great attention in the recent literature. The nonlinear observer has been a topic of interest in control theory. In this research, a modified robust sliding-mode observer (SMO) is designed to accurately estimate the state variables of nonlinear systems in the presence of disturbances and model uncertainties. The observer has a simple ...
متن کاملError Modeling in Distribution Network State Estimation Using RBF-Based Artificial Neural Network
State estimation is essential to access observable network models for online monitoring and analyzing of power systems. Due to the integration of distributed energy resources and new technologies, state estimation in distribution systems would be necessary. However, accurate input data are essential for an accurate estimation along with knowledge on the possible correlation between the real and...
متن کاملModified Weighted Least Squares Method to Improve Active Distribution System State Estimation
The development of communications and telecommunications infrastructure, followed by the extension of a new generation of smart distribution grids, has brought real-time control of distribution systems to electrical industry professionals’ attention. Also, the increasing use of distributed generation (DG) resources and the need for participation in the system voltage control, which is possible ...
متن کاملControl Theory and Economic Policy Optimization: The Origin, Achievements and the Fading Optimism from a Historical Standpoint
Economists were interested in economic stabilization policies as early as the 1930’s but the formal applications of stability theory from the classical control theory to economic analysis appeared in the early 1950’s when a number of control engineers actively collaborated with economists on economic stability and feedback mechanisms. The theory of optimal control resulting from the contributio...
متن کامل